Earth Is Facing Most Severe Extinction Crisis in 65 Million Years
From an Article by Rex Weyler, EcoWatch.com, August 19, 2015
Earth’s living community is now suffering the most severe biodiversity crisis in 65 million years, since a meteorite struck near modern Chicxulub, Mexico, injecting dust and sulfuric acid into the atmosphere and devastating 76 percent of all living species, including the dinosaurs.
Ecologists now ask whether or not Earth has entered another “major” extinction event, if extinctions are as important as general diversity collapse and which emergency actions we might take to reverse the disturbing trends.
Photo: Biodiversity decline is now higher than any time since the Chicxulub asteroid impact.
In 1972, at the first UN environmental conference in Stockholm, Stanford biologist Paul Ehrlich, linked the collapse of “organic diversity” to human population and industrial growth. In 1981, he published Extinction, explaining the causes and consequences of the biodiversity crisis and providing response priorities, starting with stabilizing human population and growth.
This summer, Ehrlich, Gerardo Ceballos (University of Mexico) and their colleagues, published “Accelerated modern human–induced species losses” in Science Advances. “The study shows,” Ehrlich explains, “that we are now entering the sixth great mass extinction event.” To demonstrate that Earth is experiencing a “mass extinction event” depends on showing that current extinction rates far exceed normal “background” extinction rates. To be absolutely certain, Ehrlich and Ceballos used the most conservative estimates of current extinctions, which they found to be about 10-to-100-times faster than the background rate.
There are three points worth keeping in mind:
>>> most extinction rate estimates from biologists range from 100 to 1000 times faster than background.
>>> this modern extinction rate is accelerating with each passing year.
>>> the general diversity collapse, even among species that don’t go extinct, remains equally serious for humanity.
Biodiversity decline is now higher than any time since the Chicxulub asteroid impact. This time, however, humans are the “asteroid” responsible.
I’ve used the term “ninth extinction” because the so-called “five major extinctions” occurred in the last 450 million years, but three earlier extinctions are significant and teach us something important about ecology and our potential role in emergency response.
Ancient toxic waste
Some 3.5 billion years ago, as Earth cooled enough to sustain complex molecules, anaerobic bacteria formed, single-cell marine organisms living without oxygen and extracting energy from sulphur. Within a few hundred million years, some bacteria and algae learned to collect solar energy through photosynthesis, releasing oxygen into the sea. About 2.5 billion years ago, free oxygen became life’s first global ecological crisis.
Oxygen is toxic to anaerobic bacteria. Some species perished at only 0.5 percent oxygen, while others survived up to 8 percent oxygen. Oxygen eventually saturated the oceans, leaked into the atmosphere and oxidized methane, triggering a global cooling, the “Huronian glaciation,” which led to more extinctions.
The evolutionary success of photosynthetic bacteria and algae triggered impacts similar to our own: crowded habitats, toxic waste, atmospheric disruption, temperature change and biodiversity collapse. Sound familiar? The die-off continued until certain organisms evolved to metabolize oxygen and the ecosystem regained a new dynamic equilibrium. We could help our situation by encouraging organisms that metabolize carbon dioxide, namely plants, but we are reducing forest cover, adding to the crisis.
This article has Pages: 1 • 2 • 3
See also: www.FrackCheckWV.net